
UCRL-ID-119153

Fission Energy and Systems Safety Program
FFFEEESSSSSSPPP

Lawrence Livermore National Laboratory

Design Factors for
Safety-Critical Software

J. Dennis Lawrence

G. Gary Preckshot

October 4, 1994

This work was supported by the United States Nuclear Regulatory Commission under a Memorandum of
Understanding with the United States Department of Energy, and performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or the University of
California, and shall not be used for advertising or product endorsement purposes.

Prepared for
U.S. Nuclear Regulatory Commission

Design Factors for

Safety-Critical Software

Manuscript date: October 4, 1994

Prepared by
J. Dennis Lawrence
G. Gary Preckshot

Lawrence Livermore National Laboratory
7000 East Avenue
Livermore, CA 94550

ii

iii

ABSTRACT

This report is the fourth of a series of reports prepared for the Nuclear Regulatory Commission Office of Nuclear
Reactor Regulation, and provides the summary and conclusion for this task.

It is widely believed in the software engineering community that almost anything can affect the ability of software to
reliably perform its tasks, particularly when safety is at issue. While this statement is true, both in the abstract and in
specific instances, it is not particularly helpful. It remains necessary for auditors and other reviewers to assure
themselves and the public that safety-critical software has sufficiently low probability of failing in such a way as to
cause death or injury to permit it to be used in safety-critical applications.

Achieving this assurance is best done by using a well-planned, methodical approach. A possible approach is to
concentrate on those attributes of the software and the development process (design factors) that are most influential
in achieving dependable software.

Seventy-four design factors are identified in this report, divided into nine categories. Seven categories relate to the
development process, and one category relates to the products of that process. The remaining category contains
negative factors whose presence should be regarded as cause for intense scrutiny of the development process.

Seven of the design factors should be considered mandatory for any organization responsible for developing safety-
critical software. An additional nine factors are considered essential to safety, but not as important as the first seven.
The remaining design factors can provide additional important indications of the quality of the development effort
and the software resulting from that effort.

iv

v

CONTENTS

1. INTRODUCTION .. 1
1.1. Purpose... 1
1.2. Scope.. 1
1.3. Sources of Information .. 1

2. SUMMARY .. 2

3. DETAILED LIST OF DESIGN FACTORS... 3
3.1. General Design Factors.. 3
3.2. Process Control Design Factors ... 5
3.3. Management Design Factors ... 5
3.4. Personnel Design Factors... 6
3.5. Development Design Factors ... 6
3.6. Reliability and Safety Factors Design Factors ... 8
3.7. Negative Factors Design Factors ... 9
3.8. Product Design Factors .. 10

4. CONCLUSION ... 10

REFERENCES... 13

vi

ACKNOWLEDGMENT

The authors thank and acknowledge the efforts of Nuclear Regulatory Commission staff members, Mr. John
Gallagher, Mr. Joe Joyce, and Mr. Michael E. Waterman, who reviewed this work and provided their insights and
comments.

Section 1. Introduction

1

DESIGN FACTORS FOR
SAFETY-CRITICAL SOFTWARE

1. INTRODUCTION

1.1. Purpose
The word “dependability” can be defined to be a
measure of a system’s “ability to commence and
complete a mission without failure” (Lawrence 1993).
This broad concept incorporates various characteristics
of the software, including reliability, safety,
availability, maintainability, and others.

The term “design factor” is used in this report to refer
to any characteristic of the software, or of the process
used to develop the software, which has the potential to
affect its dependability.

It is widely believed in the software engineering
community that almost anything can affect the ability
of software to reliably perform its tasks, particularly
when safety is at issue. While this statement is true,
both in the abstract and in specific instances, it is not
particularly helpful. It remains necessary for auditors
and other reviewers to assure themselves and the
public that safety-critical software has sufficiently low
probability of failing in such a way as to cause death or
injury to permit it to be used in safety-critical
applications.

Achieving this assurance is best done by using a well-
planned, methodical approach. A possible approach is
to concentrate on those attributes of the software and
the development process (design factors) that are most
influential in achieving dependable software.

Seventy-four design factors are identified in this report,
divided into nine categories. Seven categories relate to
the development process, and one category relates to
the products of that process. The remaining category
contains negative factors whose presence should be
regarded as cause for intense scrutiny of the
development process.

1.2. Scope
This report is the fourth of a series of reports prepared
for the Nuclear Regulatory Commission Office of
Nuclear Reactor Regulation (NRC/NRR), and provides
the summary and conclusion for this task. The reader is
assumed to be familiar with the contents of the first
three reports:

• J. Dennis Lawrence, Workshop on Developing Safe
Software: Final Report, UCRL-ID-113438,
Lawrence Livermore National Laboratory
(November 1992).

• J. Dennis Lawrence, Software Reliability and Safety
in Nuclear Reactor Protection Systems,
NUREG/CR-6101, UCRL-ID-114839, Lawrence
Livermore National Laboratory (November 1993).

• J. Dennis Lawrence and Warren L. Persons, Survey
of Industry Methods for Producing Highly Reliable
Software, UCRL-ID-117524, Lawrence Livermore
National Laboratory (June 1994).

1.3. Sources of Information
The information presented in this report is a synthesis
of information obtained from numerous sources. The
following are the primary sources.

• A Workshop on Developing Safe Software was
held July 22-23, 1992, in San Diego, California.
The purpose was to have four internationally known
software experts discuss among themselves
software safety issues which are of interest to the
NRC. The results of the workshop are documented
in Lawrence 1992.

• Three companies with excellent reputations for
developing high-quality software were visited
during 1993 with the intent of discovering those
attitudes and practices which each company deemed
important to their success in constructing software
of consistently high quality. An analysis of the
results of these visits is documented in Lawrence
1994.

• Numerous standards, from IEEE and other
organizations, exist which mandate or recommend
development practices that are believed by the
standards development bodies to improve software
development. The following standards were used in
preparing the report:

Software for Computers in the Safety Systems of
Nuclear Power Stations, IEC Publication 880
(1986).

IEEE Standard Criteria for Digital Computers in
Safety Systems of Nuclear Power Generating
Stations, IEEE 7-4.3.2 (1993).

IEEE Standard Glossary of Software Engineering
Terminology, IEEE 610.12 (1990).

IEEE Standard for Software Verification and
Validation Plans, ANSI/IEEE 1012 (1986).

IEEE Standard for Developing Life Cycle
Processes, IEEE 1074 (1991).

Section 2. Summary

2

IEEE Standard for Software Safety Plans, IEEE
1228 (1994).

• Research performed by LLNL for the NRC. This
research is documented in the following references
(in addition to those cited in Section 1.2): Preckshot
1993a, Preckshot 1993b, Persons 1994, and Scott
1994.

• A report, Factors in Software Quality, written for
Rome Air Development Center in 1977 (McCall et
al. 1977).

• The general literature on software engineering, as
published in books, journal articles and technical
reports.

Much of the information in this report also appears in
Ploof and Preckshot 1993, Appendix A.

2. SUMMARY
No single design factor, and no combination of design
factors, is sufficient to guarantee safety. Experience
does show that there is a combination of design factors
which, if properly used, can result in an adequate level
of software dependability.

Some design factors are considered necessary to any
project where safety must be assured, and others can be
quite helpful. The most important design factors are
discussed below. All 74 design factors are listed, with
brief comments, in Section 3.

Seven design factors should be considered mandatory
for any organization responsible for developing safety-
critical software. These are listed below. The lack of
any one of these factors should be considered as
sufficient grounds to reject the software.

• Personnel quality and experience. Although this
will be a controversial subject, personnel quality
continues to be the single most important factor in
the designing and coding of a software product. The
controversy is not whether intellectual capability is
a good thing, but rather who should determine it
and how it should be determined. A distinction
should be made between managerial ability and
technical ability. Both are important. In particular, a
lack of managerial ability can thwart considerable
technical ability.

• Use of configuration management. Configuration
management is crucial and is absolutely necessary
to have confidence that the correct product is built,
and that change occurs in an orderly way.
Configuration errors are among the simplest and
also the most prevalent made in the software
industry. Adequate configuration management can
be demonstrated by review of past and current
company practices. Three configuration

management functions of particular note should
always be present: change control, interface
documentation and control, and delivered product
configuration control.

• Clear, stable and validated software
requirements. The software development process
should produce clear, stable, and validated software
requirements. Company practices, plans, and
example requirements from prior safety-related
products provide evidence that clear, stable, and
validated requirements are the norm. Positive
findings include documented requirements
analyses, requirements stability control using
configuration management, and the use of
prototyping or simulation to understand the
implications of requirements more fully.

• Independent verification and validation.1
Verification and validation (V&V) activities should
independently confirm requirements and
development attributes, as well as individual
product quality. V&V leaves a significant trail of
documentation, which can be inspected for prior
safety-related projects. Significant positive findings
include multi-level testing (e.g., unit, subsystem,
and system), and products that are designed to
facilitate V&V.

• Use of a formal life cycle for product
development. The organization should have a very
clear picture of, and a formal model for, the life
cycle of its products. This should be clearly
reflected as the temporal glue that binds all
development and certification activities into an
orderly sequence. The use of a life cycle model will
be clear from review of development plans.

• Traceability from system requirements and
design, through software requirements, software
design, code, and validation testing. The software
development process should produce clear,
unambiguous, documented designs that are
traceable item-by-item to requirements. There
should be a systematic process for producing
software products that are traceable item-by-item to
designs. This is demonstrated by documented
software development process models, which
describe the systematic procedures and attributes of
the software development process. The models may
be validated by process measurement.

• Use of hazards analysis and risk analysis to
guide software development. For ultra-reliable
safety software, the requirements, development
techniques, V&V rigor, and product factors should
be guided by the results of hazards and risk
analyses. The consistent use of reliability practices

1 In this report, independent V&V includes independent testing.

Section 2. Summary

3

can be seen in the documentation of analyses used
for planning development, V&V, and designs for
prior safety-related products.

An additional nine design factors are considered
essential to safety. The lack of any one of the factors is
a cause for concern, and should result in extensive
assessment of the software. The lack of more than one
should be considered as grounds for rejection of the
software. These factors are listed next, also in no
particular order.

• Commitment to quality. A commitment to quality
is the most important of the essential factors. The
organization’s reward structure should match the
quality commitment claim and should have a
relatively long history demonstrated by
documentation.

• Clearly defined and stated management policy
and a well-managed and complete
documentation activity. From a regulatory
viewpoint, a clearly defined and stated management
policy and a well-managed and complete
documentation activity are the only ways the NRC
can obtain reliable visibility into other design
factors. The organizational record should show a
number of years of successful practice under stable
policy.

• Independence of configuration management and
quality assurance. Configuration management and
product assurance should at least be independent of
the managers and programmers responsible for
developing the product. Independence can be
demonstrated by review of a company’s
management structure and reward system.

• Continuous process improvement. Management
should have a clear picture of the development
process and should be prosecuting continuous
improvement efforts. This should be demonstrated
by a reasonably long (several years) documented
history of this activity. Other checkpoints are
development and use of documented internal or
external (e.g., national) standards, and use of
process models.

• Measurement of the results of the software
development process. Management should be
measuring the results of the software process and
management’s own performance. Without a
measurement record, claims of process
improvement cannot be substantiated. The database
of measurement results is evidence of process and
product measurement.

• Sufficient available resources and training,
appropriate to the difficulty of the development
tasks. The availability of resources and training

assigned by management should be appropriate for
the difficulty of the software tasks. Resource
allocation is documented by management plans and
histories of plan execution. Training is documented
by personnel assignment records.

• A history of on-time, on-budget, within-
specification product deliveries. Management’s
ability to assess development risk and history of on-
time, on-budget, within-specification deliveries is a
significant indicator of probable quality. Managerial
performance is documented by plans and results for
previous safety-related projects similar in scope and
nature to current work or future work under the
purview of the NRC.

• Early problem detection and resolution. The
practice of early problem detection and resolution is
a positive indicator of eventual product quality and
can be demonstrated by documenting detected
software errors systematically.

• Defect tracking. Defect tracking, root-cause
determination, and correction of both the product
and the process are positive indicators of process
improvement, if the defect-tracking activity is done
with due regard for statistical validity.
Documentation of this activity provides a record of
organizational performance.

The remaining design factors, included in the full list
of design factors presented in Chapter 3, can provide
additional important indications of the quality of the
development effort and the software resulting from that
effort. Particular attention should be paid to the
negative factors (Section 3.7) and the product factors
(Section 3.8).

3. DETAILED LIST OF DESIGN
FACTORS
Design factors are organized under nine headings and
are described in one-paragraph appraisals below. The
rationale for each heading is described in a single
paragraph following the heading. Each design factor
description gives the justification for the design factor
and notes restrictions where appropriate. The design
factors listed are taken from the sources listed in
Section 1.4 and are not the work of the authors. The
arrangement, headings, and descriptions represent the
opinions or work of the authors.

3.1. General Design Factors
General design factors apply to all members of an
organization in all phases of software development.

Section 3. Design Factors

4

3.1.1. All levels of the organization are committed
to quality.

Since software quality, like a chain, is only as strong as
the weakest link, all members of a software
development organization must be committed to
making quality happen. Management commitment is
particularly important because management controls
the resources allocated to quality assurance activities.

3.1.2. There is longevity in personnel, policy, and
process.

The process of building a quality software
development organization takes time, by some
accounts two years for each incremental improvement
in SEI maturity level.2 Therefore, personnel, policies,
and the development process must exist and be under
improvement for a relatively long period of time. Data
on product performance and software process must
also be collected for significant periods of time to be
statistically valid.

3.1.3. Configuration management is used
extensively.

Configuration management was cited by all
respondents as being crucial to any scheme of product
or process control, irrespective of any other software
method or process model. Without effective
configuration management, it is impossible to
determine what has been delivered, how it was
produced, who made it, and whether it met
requirements.

3.1.4. Testing, V&V, and software quality
assurance (SQA) are independent.

Independence of testing, validation and verification,
and quality assurance activities from development
activities that are under schedule and budget pressure
is necessary to prevent compromise of quality for
expediency.

3.1.5. An appropriate life cycle model is used.

The discipline of using a life cycle model is more
important than the actual details of the model selected.
A life cycle model allows the various related activities
of software development and quality assurance to be
coordinated in a rational progression.

3.1.6. There is continuous process improvement.

No software development process is perfect, and a
good process will degrade without continuous
attention. Improvement is a general watchword
regardless of actual process details.

2 From the Carnegie Mellon University Software Engineering
Institute (SEI). See Paulk 1993.

3.1.7. Reviews, walkthroughs, and inspections are
used.

Reviews, walkthroughs, and inspections are
recommended at all stages of development and for all
products, including V&V and quality assurance
products. Code inspections and walkthroughs are
credited by one respondent with finding 85% of errors
prior even to testing.

3.1.8. Automation is used where appropriate.

Automation is suggested for all activities that are
tedious, repetitive, error-prone, and sufficiently well-
defined that automated software tools can be written to
accomplish them. This allows human effort to be
redirected to areas where the human intellect is
superior to machine performance. Automation may
also permit enforcement of standards and customs.

3.1.9. Vendors, products, and services are certified.

Products and services used in the development process
should be certified to the level required to support the
product(s) being developed.

3.1.10. Software is the company’s primary
business.

The company, or division responsible for software,
should be in the software development business
directly, not as a peripheral activity to the company’s
real business. This ensures that software concerns and
software expertise are sufficiently high in the
company’s business plans that they receive adequate
attention and resources.

3.1.11. The organization adapts to changing
environments.

The computer industry, and particularly the software
industry, has undergone rapid change during its entire
existence. Software development organizations and
their software development processes must continue to
adapt to this changing environment, both because old
methods used in new situations may be inappropriate,
and because the tools and equipment available may
force the change.

3.1.12. The organizational goal is defect-free
software.

Even though achieving this goal may be impossible, no
safety-critical software developer should aim to have
defects. The defect-free goal and the resources devoted
to it are evidence of commitment to quality.

3.1.13. Quality must be built in; testing cannot find
all defects.

It is not possible to “test in quality.” Quality must be
designed into the product and that fact should be

Section 3. Design Factors

5

demonstrated by testing, V&V, and quality assurance
activities. Quality, in this definition, means adherence
to requirements.

3.2. Process Control Design Factors
The factors described below apply specifically to
controlling or measuring the software development
process.

3.2.1. Processes are defined.

The software development process should be defined
in detail so that practitioners can judge whether or not
they are accomplishing development according to the
process model.

3.2.2. Process is stabilized by measurement and
feedback.

Performance of actual development activities is
measured and compared with the defined process
model. If discrepancies exist, either development
activities are redirected or the model is changed until a
stable, well-understood development process is
achieved.

3.2.3. The number of process variants is reduced by
standardization.

An organization should settle on one or a few process
models to guide its development activities, depending
upon purpose and business. For instance, a spiral life
cycle model with repeated prototypes might be used
for products whose requirements are inexactly known
but whose failure consequences are low. A waterfall
life cycle model might be used for products whose
requirements are well known, but whose performance
requirements are strict and whose failure consequences
are severe. Limiting the number of process variants
makes sense because scarce resources can be applied
more effectively to process improvement.

3.2.4. Processes are improved only after they are
stabilized.

Hitting a moving target is always more difficult than
hitting a stationary target. Development processes
should be stabilized and measurements made so that
the effects of changes can be determined and
adjustments made in additional change efforts. Two
developer organizations suggest that changes to
process should be made one at a time, allowing time
for stabilization and measurement before making
additional changes. This is one contributor to the
longevity factor (See Section 3.1.2).

3.2.5. Data collection and use of data is balanced.

The amount of data collected should be appropriate to
the use of it. Collecting data that will not be used

(including usage later in historical databases) wastes
effort. Conversely, making decisions with inadequate
data is just guessing. Data should be collected for
historical databases as part of building a long-term
process or product history, but not to the extent that it
overwhelms short-term data usage activity.

3.3. Management Design Factors
These are factors that are primarily the responsibility
of management to implement or enforce.

3.3.1. The reward structure matches the quality
commitment.

If management gives lip service to quality, but rewards
for other performance, other performance is what will
be achieved.

3.3.2. Management uses process models.

While all persons involved in the software
development effort benefit from understanding the
process models in use, management’s ability to control
development processes by allocation of resources and
effort is greatly enhanced by using process models.

3.3.3. There is constant process measurement and
improvement effort.

Software development is a perishable process. Quality
can only be maintained by constant measurement and
improvement effort. Management’s responsibility is to
see that this effort is expended, even though it does not
contribute immediately to a product.

3.3.4. Management makes predictions using
models.

Control of process is only achieved by predicting what
effect proposed actions will have, and modifying
actions to have the desired effect. Management should
use model predictions as a first cut at determining what
the effect of management actions will be. The use of
models predictions and subsequent measurement is
essentially feedback control, with the model
predictions providing a feed-forward component. In the
language of control systems, the measurement lag
would make an extremely sluggish system or an
unstable one without the anticipation provided by
predictions.

3.3.5. Management achieves predicted cost,
schedule, and quality goals more often than not.

It is important that management have a track record of
planning, allocating resources, and meeting schedules
within cost and quality constraints because the first
thing to go under schedule and cost pressures is usually
quality.

Section 3. Design Factors

6

3.3.6. Management controls risks by adopting
appropriate strategies.

In the commercial software development world, risk is
perceived as failing to deliver a minimally acceptable
product on time and more or less within budget.
Management uses such strategies as “descoping”
(delivering less), delivering with bugs, or renegotiating
schedules, depending upon contractual provisions (if
any) and commercial conditions. Delivering buggy
software is a strategy often used by commercial
software vendors trying to hit a market window,
although it is greatly disliked by customers.

3.3.7. Management abandons methods that do not
work.

This may seem like an obvious thing to do, but
abandoning a work practice is often a serious career
risk for a manager because it is viewed as an admission
of error. Mature management expects some percentage
of methods attempted to perform relatively poorly, and
plans to acquire data about method performance with a
view to discontinuing those that do not work well (See
item 3.7.9).

3.3.8. Management ensures planning, production,
and control of documentation.

Accurate and complete documentation is necessary for
product maintenance as well as data collection about
organizational performance. Documentation is one of
the first things to be neglected under stress, and serves
as a sensitive indicator of management performance.
Documentation also serves as a record of
organizational longevity and history, validating claims
of sufficient experience to be considered at one of the
higher SEI maturity levels.

3.3.9. Management invites external review.

Nobody is objective about himself.

3.3.10. Improvement takes time — an average of
two years.

Respondents were unanimous in noting that no quality
software development organization can be put together
overnight. Empirically, it appears that about two years
are required for the average software organization to
move up one rank in the SEI maturity scale.

3.4. Personnel Design Factors
These are factors that characterize the personnel
involved in the software development process.

3.4.1. Programming skill is not enough; some
personnel must be skilled in the problem domain.

When software is applied to problems whose solution
has a significant non-software component, as would

occur in reactor protection systems, aerospace control
systems, or the like, programmers who have no
knowledge in the application field are prone to make
mistakes of ignorance. In the highly specialized space
shuttle program, for example, there is close
cooperation between engineers and scientists who are
cognizant of astronautics and shuttle systems, and
programmers.

3.4.2. High intellectual ability of staff is crucial to
success.

Most writers in the software development field note
that the single greatest factor in ensuring quality
software is staff quality. A distinction should be made
between managerial ability and technical ability. Often,
an individual may be adept in only one area.

3.4.3. Inaccurate interpersonal communications are
an obstacle to producing high-reliability software.

The large organizations in the LLNL survey noted that
as software teams get larger, efficient inter-team-
member communications become more important, and
sometimes become a bottleneck. The corollary of this
point is that small teams are preferred.

3.4.4. Personnel in influential positions should be
highly skilled in all aspects of the development of
high-reliability software.

Developing high-reliability software is a special skill
that is learned, not inherent. Persons with average
schooling or experience cannot be expected to do this
and should not be in positions where their inexperience
can affect the development process.

3.5. Development Design Factors
These are factors specifically related to the software
development process.

3.5.1. Configuration management, V&V, and SQA
are coordinated with development activities.

This reflects the fact that in an orderly software
development process, certain products subject to V&V
and SQA are available at process milestones. V&V and
SQA products are produced from development
products and lose their effectiveness if not fed back
into the development process in a timely way.

3.5.2. Requirements are stable.

One of the major markers of failed software
development efforts is unclear and constantly changing
requirements. Stable requirements are crucial to
success.

Section 3. Design Factors

7

3.5.3. A requirements analysis is performed.

Having stable requirements is merely the first step.
Requirements must be analyzed to understand their
implications. Analysis often reveals inconsistencies,
unneeded but expensive specifications, or requirements
that may be extremely difficult or impossible to fulfill.
Analysis is also necessary when converting
requirements provided by non-software specialists to
requirements suitable for software.

3.5.4. A requirements validation is performed if
possible.

Requirements validation is the process of returning to
the original statement of requirements and examining
the detailed, analyzed list in light of the original. In
some cases, such as reachability analysis of
communication protocols, requirements validation can
be automated.

3.5.5. Much of the development effort concerns
getting the requirements right.

This is true, at least, of experienced software
developers who have discovered that it is easier in the
long run to do something once right, than several times
wrong. Long and detailed scrutiny of requirements is a
marker of successful developers.

3.5.6. Prototyping or simulation is an important
tool.

Prototypes or simulations are useful in three ways in
software development (Preckshot 1993a). First, they
are often used to demonstrate proposed designs to
prospective users as an iterative method of refining
requirements. Second, they may be used to test an
approach to solving a problem in which there are
uncertainties, including hardware performance
uncertainties. Third, they may be used in the traditional
sense of an engineering prototype, to demonstrate or
validate performance of a scalable portion of the final
system.

3.5.7. Critical components are identified early.

This point was emphasized by several respondents and
reflects the view that management must identify where
to apply the most valuable resources (personnel) early,
so that they have time to solve the problems. This is a
form of development risk management.

3.5.8. Development activities promote early
detection of errors.

It is a widely held view in the software industry that it
is less costly to fix errors early in the development
process. It is true in general that bug fixes of late errors
are often limited by earlier design decisions and the
small remaining time (schedule) and funds (budget).

Early error detection is another form of development
risk management.

3.5.9. Defect tracking is done uniformly and
consistently.

One of the indications of how well a software
development organization is doing is the number of
software errors being committed. Error or defect
tracking is not very easy, however, and represents
considerable effort to do in a statistically valid fashion.
Invalid methods of error accounting affect both
estimates of software reliability and corrective efforts
applied to the software development process.

3.5.10. Root causes of defects are determined and
corrective actions are taken.

Once errors are identified and tracked, the reasons they
occurred should be determined and then two corrective
actions should be taken: the product should be fixed
and the development process should be modified, if
appropriate, to reduce the probability of similar errors
in the future. This factor is typical of developers that
maintain close control of errors and error causes.

3.5.11. Testing is done in several levels, viz. unit,
subsystem, system.

It has been found that testing at different levels is
necessary because of two countervailing effects. As
level becomes more complex (toward system) low-
level errors may be exercised rarely, thus reducing the
probability of finding them. On the other hand,
complex interaction errors may only exist when the
entire software system is assembled. Also, inasmuch as
early error detection can only be done on software that
is ready early, perforce unit and subsystem testing must
be done because the system is not yet available.
Consequently, testing at multiple levels of system
assembly is done by high-reliability software suppliers.

3.5.12. V&V is planned early in the life cycle and
results are peer-reviewed.

Validation and verification as an afterthought is a
marker of an inexperienced or sloppy developer. V&V
should be planned early so that sufficient resources can
be allocated to accomplish it and so that there is
sufficient time to do it correctly. Peer review ensures
that V&V results are not reviewed exclusively by those
who planned the tests, analyses, and inspections. This
helps avoid “expectation blindness,” in which the
planners may see only the results they expected to get
and ignore signs of possible trouble.

3.5.13. The product is designed to validatable and
verifiable.

Much as an electronic device can have test points built
in for test and calibration, software can be designed

Section 3. Design Factors

8

with a view to making V&V easier. This also means
that design documentation and coding style should
permit review and easy understanding by others not
directly involved in development.

3.5.14. A design philosophy suitable for safety-
critical software is used.

In general, this means avoiding the use of “risky”
practices. Depending upon the challenges the
developer must face (e.g., aerospace vehicle flight
control is more difficult than reactor protection
systems), the most dependable and least complicated
way of solving the software problem should be
selected.

3.5.15. There is extensive reuse of “middleware.”

“Middleware” is defined by the respondent that
proposed this factor as middle-level subroutines that
are general enough to be used by several applications.
Such routines are also known as “trusted” routines, and
reuse implies that a software developer maintains a
library of trusted subroutines that are well documented,
extensively tested, and understood by the programming
staff. The advantage of reuse is that scarce intellectual
resources are freed for application to problems specific
to the software job at hand. The disadvantage is that
trusted routines may be misapplied because they
“almost” fit the function needed. Estimates in the
literature suggest that reuse can save from 20% to 50%
of the effort involved in creating software modules
from scratch, but claims of greater savings should be
viewed with caution unless the new application is very
similar to previous applications.

3.5.16. Software layers are identified and managed
appropriately according to risk.

This factor recommends an hierarchical structure for
software and makes a statement about risk that is
ambiguous. From a software developer’s viewpoint,
the riskiest software layers are those upon which the
whole product depends, so these must be done before
any version of the product can be delivered. From a
regulator’s viewpoint, the riskiest software is that
software that is essential for safety, followed by that
software that is important for safety, followed by all
other software. The respondent probably meant the
first definition of risk.

3.5.17. An appropriate level of complexity is
defined for the product, and practices are followed
that control it.

The minimum level of complexity that the product
must have is set by the functional complexity of the
requirements the product must meet. Many software
products have more than the minimum complexity
because of implementation practices or because the
designers choose an approach that is unnecessarily

complex. Complexity control must occur over the
entire life cycle of the product because unneeded
complexity can creep in during requirements analysis,
design, implementation, or maintenance.

3.5.18. Project teams are small (6–8 members).

This factor addresses the difficulty of communication
in large project teams. It can be done, but it is difficult
to maintain currency and direction in large project
teams, and management’s role in defining and
maintaining critical interfaces and project team
communications becomes more important as the team
gets larger. Small teams avoid many of the pitfalls.

3.5.19. Software interfaces are documented and
controlled.

Software interfaces (subroutine calling conventions,
system call conventions, interrupt handling, network
protocols, distributed system interactions) are always
important and form a significant part of design
documentation. With large project teams or multiple
software contractors, they are even more important.
Lack of interface documentation and control is almost
always a sign of trouble.

3.5.20. Automated tools are used to enforce
standards.

Automated tools, if easy to use, are a way of getting
everyone on a team to do things the same way (the tool
way), and thus provide a relatively low-conflict way of
enforcing standards. From a regulator’s viewpoint, the
use of automated tools improves consistency and
performance (the job is more likely to be done), both of
which are positive factors.

3.6. Reliability and Safety Factors
Design Factors
These are factors directly related to producing safety-
critical software.

3.6.1. Hazards analyses must be part of the
development process for safety-critical products.

Hazards analysis shows pathways a system can follow
to get into hazardous conditions, and is recommended
by several experts to ensure that software takes these
pathways into account. Hazards can also be introduced
by the selection of design approaches, certain
hardware, software tools, or the use of software itself
as a solution to a safety problem. The same expert
recommends additional hazards analyses at points
during the development life cycle to ensure that
existing hazards continue to be covered and that new
hazards are not introduced.

Section 3. Design Factors

9

3.6.2. Diversity used to improve reliability is
carried out at the system level.

Software diversity (e.g., N-version programming) has
not yet been demonstrated to be adequate to counter
common-mode failure due to programming error. For
this reason, diversity at the system level (i.e., diverse,
non-software methods) should be considered for
improving total system reliability. Safety is a system
issue, not solely a software issue. In safety systems
containing software, software is only one of several
components that must function correctly to perform the
safety functions. Like diversity for reliability, non-
software elements should be used to improve total
system safety.

3.6.3. The developer understands that accidents are
often caused by non-technological factors.

The safety system of which software is a part may be
circumvented, turned off, or driven into failure by
operator actions. Neither the system or the software
should be expected to prevent these problems.

3.6.4. Ultra-high reliability is not claimed for
software systems.

No known method of testing can be or has been
applied for sufficient time or number of demands to
demonstrate ultra-high reliability (10-7 to 10-9 failures
per demand). No method of logical analysis has yet
been accepted by safety system experts as sufficient to
prove that ultra-high reliability has been achieved.
Therefore, claims of ultra-high reliability should be
viewed with caution. System designs that depend upon
ultra-high reliability of components should receive the
highest level of scrutiny.

3.6.5. Testing is not claimed to demonstrate
reliability beyond 10-4 to 10-5 failures per demand.

This is based upon approximately two years of testing
time on an unchanged product without error. Since
software products, including compilers, linkers, and
other software tools, often have a new version cycle of
approximately two years, two years may be the
practical maximum testing time available in the current
commercial environment.

3.6.6. Complexity measures are understood to be of
very limited utility in estimating software reliability
or remaining software errors.

The most effective use of complexity metrics is as a
guide for allocating resources during development
(Preckshot 1993a). No complexity metrics have been
validated against reliability measures or software
errors. In the opinion of software safety experts,
complexity metrics are “snake oil” (Lawrence 1992).

3.6.7. If reliability better than 10-3 failures per
demand is required, adequate resources are made
available.

Estimates of the development cost of space shuttle
flight software are that it cost five to ten times what
comparable ground support software cost to develop.
Additional quality control measures are expensive, and
justified where consequences of failure are great.

3.7. Negative Factors Design Factors
These are factors whose presence should be cause for
caution or more thorough scrutiny.

3.7.1. There is high turnover.

The most obvious implication of high turnover is that
building a team of high-quality people with a team
memory is impossible. Less obvious is the fact that
high turnover is a comment by programmers and
managers who leave on the competence of
management that is left behind. It should not be
ignored.

3.7.2. Projects are schedule-driven, rather than
quality-driven.

The first victims of a missed deadline are usually
quality assurance and documentation. The next victim
is the testing program. A “deliver at all costs”
mentality is cause for caution.

3.7.3. Organizational process history is short or
lacking.

Most respondents were explicit about the length of
time it takes to build a quality software operation. SEI
generally regards maturity level changes as requiring
significant time (at least upwards). ISO requires
several years to achieve certification.

3.7.4. Management cannot enforce stable
requirements.

Stable and complete requirements are necessary for
quality software products, but the role of management
in ensuring this cannot be emphasized enough. Not
only must management demand that requirements be
locked down, but management itself must not be the
source of requirements thrashing. Requirements
instability and weak management control are indicators
of potential failures.

3.7.5. Management’s estimates of product
reliability greatly exceed what is actually
measurable or provable.

Unrealistic claims of product reliability may be an
indication that management does not understand the
limits of the current state of the art in software
development. Such claims should be investigated and

Section 3. Design Factors

10

management should be given an opportunity to prove
its claims.

3.7.6. Management has a record of failing to meet
predicted cost, schedule, and quality goals for
products.

This is typically an indication of management by chaos
or paradoxically, schedule-driven rather than quality-
driven development. Schedule- and budget-driven
development schemes often fail to meet delivery
schedules because of product non-performance
problems. Something is delivered, but it is not the
contracted-for product. A record of failing to meet
cost, schedule, and quality goals should be taken
seriously as an indicator of deeper troubles.

3.7.7. The organization fails to track errors and
causes.

An organization’s record of errors, causes, and
corrective actions is its win–loss track record. No
record, or a haphazard record, should be taken in
default as meaning a bad record.

3.7.8. The development effort is underfunded.

Several of the developers interviewed suggested that
most large government software contracts are
underfunded by at least a factor of two, with the
expectation that more funds can be obtained later by
litigation, contract expansion, or cost overrun
procedures. Whatever the reason, underfunding results
in staff transients and failures to carry out “non-
essential” activities such as quality assurance,
documentation, and V&V. While it may be difficult for
an outside reviewer to estimate what a correct funding
profile should be, this negative factor is a very real
one.

3.7.9. The organization exhibits “kill the
messenger” syndrome.

Several of the developers had administrative
procedures by which bearers of bad tidings could
unburden themselves without jeopardizing their
careers. They noted that organizations without these
mechanisms were often the last to know about internal
problems.

3.8. Product Design Factors
Product factors characterize the software product itself.
The factors listed below represent product
characteristics that are considered to be low-risk
implementation methods for ultra-reliable software.
The presence of these factors is considered a positive
indication of lowered complexity or easier error
detection.

Product factors are not usually found in standards or
process models, because standards setters and process
model makers consider that such factors restrict the
generality of the standard or process model.
Nonetheless, where safety-critical software is
concerned, these design factors are useful as product
quality indicators. The British Ministry of Defence
(MoD) has taken this approach, for instance, in the first
draft of its proposed standards for safety-critical
software (MoD 1991a, 1991b).

3.8.1. No interrupts.

The use of interrupts, beyond a simple clock interrupt,
is considered a higher-risk implementation method
because of the extra care required to ensure correct
synchronization between interrupt code and interrupted
code, and to ensure that interrupted code is correctly
resumed.

3.8.2. No multi-tasking.

Multi-tasking requires context switching and task
management in addition to the complications attendant
upon using interrupts.

3.8.3. Simple loop.

A single-loop program structure is the simplest
program organization capable of continuous operation
that is possible.

3.8.4. Deterministic, predictable timing.

Evidence that software product timing is a predictable
function of load, and that load is limited by design is a
positive factor. See Preckshot 1993b for additional
information.

3.8.5. No pointers.

The use of explicit pointers (addresses) of data has
been taken by some as a risky practice. The potential
exists for errors in programmer-directed address
arithmetic which would not exist if named variables
were used and the addresses were computed
automatically by compiler.

3.8.6. Strong data typing.

Data typing permits compilers to detect data misuse
errors (e.g., using an integer as if it were a floating
point number). This class of error represents a
significant proportion of all errors made, and strong
data typing with good compilers almost eliminates it.

4. CONCLUSION
The primary conclusion from the work listed in Section
1.2 is that there is no known method for absolutely
guaranteeing that a software system is adequate for a

Section 4. Conclusion

11

safety-critical application. In this respect, software is
no different from any other method of achieving safety.

As a result, both developers and assessors find
themselves attempting to reduce the probability of
errors in software leading to accidents to acceptable
levels in an environment in which relevant quantitative
measures are lacking or difficult to apply. The short
history of software engineering of safety-critical
software, compared to other forms of engineering,
increases unease.

A variety of evidence will be required for an assessor
to accept software whose correct operation is critical to
safety. This evidence involves an examination of the
history and culture of the development organization,
the actual process used to develop the application
under review, and characteristics of the programs and
documents which result from that process.

The Carnegie Mellon University Software Engineering
Institute (CMU/SEI) has defined a Capability Maturity
Model (CMM) for assessing software development
organizations. The model defines five levels of
maturity, each with specific characteristics (See Table
1). The mandatory and essential design factors listed in
Section 2 above can be matched against the
characteristics of the different maturity levels. The
result of this is that any organization that wishes to
develop software for a safety-critical nuclear
application should be assessed at the equivalent of
level 3.

Considerable assistance in achieving safe software can
be provided by using company, industry, national or
international software engineering standards. If a well
designed set of company standards exists, they are
preferred since the personnel in the company should be
familiar with them, and understand how to use them.
The set of IEEE Software Engineering Standards
provides an excellent source of standards, and should
continue to improve over the next few decades
(Lawrence 1993).

There is a great deal of emphasis in the literature on the
negative consequences of software failures in safety-
critical applications, and this is appropriate. However,
there are also several balancing, positive factors which
deserve equal emphasis. In particular, software does
not wear out, potentially can be used to identify and
compensate for hardware failures, and potentially can
provide much greater control to operators during
unexpected events. These factors should be carefully
evaluated on a case-by-case basis to determine the
suitability of software in each plant application.

The challenge faced by software developers is to use
software safely to increase the reliability of the
application, while the challenge for assessors is to
ensure that this is done. The research presented in this
series of reports suggests that convincing evidence can
be obtained in practice that reliable safety-critical
software is being or has been developed. However,
neither the development of such software nor the effort
required to certify it for safety-critical usage is easy.

Table 1. Key Process Areas by Maturity Level

Level Number Level Name Level Characteristics

1 Initial (none)

2 Repeatable Software configuration management
Software quality assurance
Software subcontract management
Software project tracking and oversight
Software project planning
Requirements management

3 Defined Peer reviews
Intergroup coordination
Software product engineering
Integrated software management
Training program
Organization process definition
Organization process focus

4 Managed Software quality management
Quantitative process management

5 Optimizing Process change management
Technology change management
Defect prevention

Paulk 1993

Section 4. Conclusion

12

References

13

REFERENCES

Lawrence 1992. J. Dennis Lawrence, Workshop on Developing Safe Software: Final Report, UCRL-ID-113438,
Lawrence Livermore National Laboratory (November 1992).

Lawrence 1993. J. Dennis Lawrence, Software Reliability and Safety in Nuclear Reactor Protection Systems,
NUREG/CR-6101, UCRL-ID-114839, Lawrence Livermore National Laboratory (November 1993).

Lawrence 1994. J. Dennis Lawrence and Warren L. Persons, Survey of Industry Methods for Producing Highly
Reliable Software, UCRL-ID-117524, Lawrence Livermore National Laboratory (June 1994).

McCall et al. 1977. Jim A. McCall, Paul K. Richards, and Gene F. Walters, Factors in Software Quality: Concept
and Definitions of Software Quality, RADC-TR-77-0369, Rome Air Development Center (November 1977).

MoD 1991a. British Ministry of Defence, The Procurement of Safety Critical Software in Defence Equipment
Part 1: Guidance, Interim Defence Standard 00-55, 5 April 1991a.

MoD 1991b. British Ministry of Defence, The Procurement of Safety Critical Software in Defence Equipment Part
2: Requirements, Interim Defence Standard 00-56, 5 April 1991b.

Paulk et al. 1993. Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber, The Capability Maturity
Model for Software, Version 1.1, Software Engineering Institute, Carnegie Mellon University, CMU/SEI-93-TR-
24 (February 1993).

Ploof and Preckshot 1993. Frank Ploof and Gary Preckshot, “Subject: Assessment of Vendors (Task 16),” Letter to
John Gallagher, NRC, LLNL CS&R 93-08-18, (August 20, 1993).

Preckshot 1993a. G. Gary Preckshot, Real-Time Systems Complexity and Scalability, UCRL-ID-114566 (1993).

Preckshot 1993b. G. Gary Preckshot, Reviewing Real-Time Performance of Nuclear Reactor Safety Systems,
NUREG/CR-6083, UCRL-ID-114565, Lawrence Livermore National Laboratory (August 1993).

Persons 1994. Warren L. Persons and J. Dennis Lawrence, Assessing Safety-Critical Software in Nuclear Power
Plants, Lawrence Livermore National Laboratory (in prep).

Scott 1994. John A. Scott and J. Dennis Lawrence, Testing Existing Software for Safety-Related Applications,
Lawrence Livermore National Laboratory (in prep).

T
echn

ical
In

form
ation

D

epartm
en

t •
 L

aw
rence L

iverm
ore N

ational L
aboratory

U
niversity of C

alifornia •
 L

iverm
ore, C

alifornia 94551

